publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. wright_bounds_24.png
    CMB and energy conservation limits on nanohertz gravitational waves
    David WrightJohn T. Giblin, and Jeffrey Hazboun
    Sep 2024
  2. baier_tuning_24.png
    Tuning a PTA in the detection era
    Jeremy G. BaierJeffrey S. Hazboun, and Joseph D. Romano
    Aug 2024
  3. oliver_peeps.jpg
    Gravitational wave peeps from EMRIs and their implication for LISA signal confusion noise
    Daniel J. Oliver, Aaron D. Johnson, Joel Berrier, and 2 more authors
    Class. Quant. Grav., May 2024
  4. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Running of the Spectral Index
    Gabriella Agazie, and  others
    Aug 2024
  5. nanograv-logo.png
    The NANOGrav 15 yr data set: Posterior predictive checks for gravitational-wave detection with pulsar timing arrays
    Gabriella Agazie, and  others
    Jul 2024
  6. nanograv-logo.png
    The Anomalous Acceleration of PSR J2043+1711: Long-Period Orbital Companion or Stellar Flyby?
    Thomas Donlon, and  others
    Jul 2024
  7. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Chromatic Gaussian Process Noise Models for Six Pulsars
    Bjorn Larsen, and  others
    Astrophys. J., Jul 2024
  8. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Looking for Signs of Discreteness in the Gravitational-wave Background
    Gabriella Agazie, and  others
    Apr 2024
  9. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Search for Transverse Polarization Modes in the Gravitational-wave Background
    Gabriella Agazie, and  others
    Astrophys. J. Lett., Apr 2024
  10. nanograv-logo.png
    The NANOGrav 12.5 yr Data Set: A Computationally Efficient Eccentric Binary Search Pipeline and Constraints on an Eccentric Supermassive Binary Candidate in 3C 66B
    Gabriella Agazie, and  others
    Astrophys. J., Apr 2024
  11. nanograv-logo.png
    Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background
    G. Agazie, and  others
    Astrophys. J., Apr 2024
  12. nanograv-logo.png
    The NANOGrav 12.5 yr Data Set: Search for Gravitational Wave Memory
    Gabriella Agazie, and  others
    Astrophys. J., Apr 2024
  13. nanograv-logo.png
    NANOGrav 15-year gravitational-wave background methods
    Aaron D. Johnson, and  others
    Phys. Rev. D, Apr 2024
  14. nanograv-logo.png
    An Unusual Pulse Shape Change Event in PSR J1713+0747 Observed with the Green Bank Telescope and CHIME
    Ross J. Jennings, and  others
    Astrophys. J., Apr 2024

2023

  1. nanograv-logo.png
    How to Detect an Astrophysical Nanohertz Gravitational Wave Background
    Bence Bécsy, and  others
    Astrophys. J., Apr 2023
  2. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background
    Gabriella Agazie, and  others
    Astrophys. J. Lett., Apr 2023
  3. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background
    Gabriella Agazie, and  others
    Astrophys. J. Lett., Apr 2023
  4. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget
    Gabriella Agazie, and  others
    Astrophys. J. Lett., Apr 2023
  5. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
    Gabriella Agazie, and  others
    Astrophys. J. Lett., Apr 2023
  6. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Search for Signals from New Physics
    Adeela Afzal, and  others
    Astrophys. J. Lett., Apr 2023
    [Erratum: Astrophys.J.Lett. 971, L27 (2024), Erratum: Astrophys.J. 971, L27 (2024)]
  7. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars
    Gabriella Agazie, and  others
    Astrophys. J. Lett., Apr 2023
  8. nanograv-logo.png
    The NANOGrav 15 yr Data Set: Search for Anisotropy in the Gravitational-wave Background
    Gabriella Agazie, and  others
    Astrophys. J. Lett., Apr 2023
  9. Analytic distribution of the optimal cross-correlation statistic for stochastic gravitational-wave-background searches using pulsar timing arrays
    Jeffrey S. Hazboun, Patrick M. Meyers, Joseph D. Romano, and 2 more authors
    Phys. Rev. D, Apr 2023
  10. ipta-logo.png
    Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array
    M. Falxa, and  others
    Mon. Not. Roy. Astron. Soc., Apr 2023
  11. nanograv-logo.png
    The NANOGrav 12.5 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
    Zaven Arzoumanian, and  others
    Astrophys. J. Lett., Apr 2023

2022

  1. Disentangling Multiple Stochastic Gravitational Wave Background Sources in PTA Data Sets
    Andrew R. Kaiser, Nihan S. Pol, Maura A. McLaughlin, and 7 more authors
    Astrophys. J., Apr 2022
  2. ipta-logo.png
    The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background
    J. Antoniadis, and  others
    Mon. Not. Roy. Astron. Soc., Apr 2022
  3. A Detection of Red Noise in PSR J1824–2452A and Projections for PSR B1937+21 Using NICER X-Ray Timing Data
    Jeffrey S. Hazboun, and  others
    Astrophys. J., Apr 2022
  4. nanograv-logo.png
    Bayesian Solar Wind Modeling with Pulsar Timing Arrays
    Jeffrey S. Hazboun, and  others
    Astrophys. J., Apr 2022

2021

  1. nanograv-logo.png
    The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background
    Zaven Arzoumanian, and  others
    Astrophys. J. Lett., Apr 2021
  2. nanograv-logo.png
    Searching for Gravitational Waves from Cosmological Phase Transitions with the NANOGrav 12.5-Year Dataset
    Zaven Arzoumanian, and  others
    Phys. Rev. Lett., Apr 2021
  3. The Pulsar Signal Simulator: A Python package for simulating radio signal data from pulsars
    Jeffrey S. Hazboun, Brent Shapiro-Albert, Paul T. Baker, and 7 more authors
    J. Open Source Softw., Apr 2021
  4. nanograv-logo.png
    The NANOGrav 11 yr Data Set: Limits on Supermassive Black Hole Binaries in Galaxies within 500 Mpc
    Zaven Arzoumanian, and  others
    Astrophys. J., Apr 2021
  5. Common-spectrum process versus cross-correlation for gravitational-wave searches using pulsar timing arrays
    Joseph D. RomanoJeffrey S. Hazboun, Xavier Siemens, and 1 more author
    Phys. Rev. D, Apr 2021
  6. nanograv-logo.png
    Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection
    Nihan S. Pol, and  others
    Astrophys. J. Lett., Apr 2021
  7. A Study in Frequency-Dependent Effects on Precision Pulsar Timing Parameters with the Pulsar Signal Simulator
    Brent J. Shapiro-Albert, Jeffrey S. Hazboun, Maura A. McLaughlin, and 1 more author
    Astrophys. J., Apr 2021
  8. Multimessenger Pulsar Timing Array Constraints on Supermassive Black Hole Binaries Traced by Periodic Light Curves
    Chengcheng Xin, Chiara M. F. Mingarelli, and Jeffrey S. Hazboun
    Astrophys. J., Apr 2021
  9. Precision Timing of PSR J0437–4715 with the IAR Observatory and Implications for Low-frequency Gravitational Wave Source Sensitivity
    M. T. Lam, and J. S. Hazboun
    Astrophys. J., Apr 2021
  10. nanograv-logo.png
    The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars
    Md F. Alam, and  others
    Astrophys. J. Suppl., Apr 2021
  11. nanograv-logo.png
    The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars
    Md F. Alam, and  others
    Astrophys. J. Suppl., Apr 2021

2020

  1. Model Dependence of Bayesian Gravitational-Wave Background Statistics for Pulsar Timing Arrays
    Jeffrey S. Hazboun, Joseph Simon, Xavier Siemens, and 1 more author
    Astrophys. J. Lett., Apr 2020
  2. nanograv-logo.png
    The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background
    Zaven Arzoumanian, and  others
    Astrophys. J. Lett., Apr 2020
  3. nanograv-logo.png
    Multimessenger Gravitational-wave Searches with Pulsar Timing Arrays: Application to 3C 66B Using the NANOGrav 11-year Data Set
    Zaven Arzoumanian, and  others
    Astrophys. J., Apr 2020
  4. nanograv-logo.png
    Modeling the uncertainties of solar-system ephemerides for robust gravitational-wave searches with pulsar timing arrays
    M. Vallisneri, and  others
    Jan 2020
  5. nanograv-logo.png
    The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory
    K. Aggarwal, and  others
    Astrophys. J., Jan 2020

2019

  1. Hasasia: A Python package for Pulsar Timing Array Sensitivity Curves
    Jeffrey HazbounJoseph Romano, and Tristan Smith
    J. Open Source Softw., Jan 2019
  2. nanograv-logo.png
    The NANOGrav 11-Year Data Set: Evolution of Gravitational Wave Background Statistics
    J. S. Hazboun, and  others
    Sep 2019
  3. ipta-logo.png
    The International Pulsar Timing Array: Second data release
    B. B. P. Perera, and  others
    Mon. Not. Roy. Astron. Soc., Sep 2019
  4. nanograv-logo.png
    The NANOGrav Program for Gravitational Waves and Fundamental Physics
    A. Brazier, and  others
    Aug 2019
  5. nanograv-logo.png
    NANOGrav Education and Outreach: Growing a Diverse and Inclusive Collaboration for Low-Frequency Gravitational Wave Astronomy
    P. T. Baker, and  others
    Jul 2019
  6. Physics Beyond the Standard Model With Pulsar Timing Arrays
    Xavier Siemens, Jeffrey S. Hazboun, Paul T. Baker, and 5 more authors
    Jul 2019
  7. Realistic sensitivity curves for pulsar timing arrays
    Jeffrey S. HazbounJoseph D. Romano, and Tristan L. Smith
    Phys. Rev. D, Jul 2019
  8. Astro2020 science white paper: The gravitational wave view of massive black holes
    Monica Colpi, and  others
    Mar 2019
  9. nanograv-logo.png
    The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
    K. Aggarwal, and  others
    Astrophys. J., Mar 2019
  10. The Astrophysics of Nanohertz Gravitational Waves
    Sarah Burke-Spolaor, and  others
    Astron. Astrophys. Rev., Mar 2019

2018

  1. The Second International Pulsar Timing Array Mock Data Challenge
    Jeffrey S. Hazboun, Chiara M. F. Mingarelli, and Kejia Lee
    Oct 2018
  2. An Acoustical Analogue of a Galactic-scale Gravitational-Wave Detector
    Michael T. Lam, Joseph D. Romano, Joey S. Key, and 2 more authors
    Am. J. Phys., Oct 2018
  3. Constructing an explicit AdS/CFT correspondence with Cartan geometry
    Jeffrey S. Hazboun
    Nucl. Phys. B, Oct 2018
  4. nanograv-logo.png
    The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background
    Z. Arzoumanian, and  others
    Astrophys. J., Oct 2018
  5. A Second Chromatic Timing Event of Interstellar Origin toward PSR J1713+0747
    M. T. Lam, and  others
    Astrophys. J., Oct 2018

2017

  1. Power radiated by a binary system in a de Sitter Universe
    Béatrice Bonga, and Jeffrey S. Hazboun
    Phys. Rev. D, Oct 2017

2016

  1. Null-stream pointing with pulsar timing arrays
    Jeffrey S. Hazboun, and Shane L. Larson
    Jul 2016

2014

  1. C7 multi-messenger astronomy of GW sources
    M. Branchesi, and  others
    Gen. Rel. Grav., Jul 2014
  2. Time and dark matter from the conformal symmetries of Euclidean space
    Jeffrey S Hazboun, and James T Wheeler
    Class. Quant. Grav., Jul 2014

2013

  1. Limiting alternative theories of gravity using gravitational wave observations across the spectrum
    Jeffrey S. Hazboun, Manuel Pichardo Marcano, and Shane L. Larson
    Nov 2013

2012

  1. A systematic construction of curved phase space: A gravitational gauge theory with symplectic form
    Jeffrey S. Hazboun, and James T. Wheeler
    J. Phys. Conf. Ser., Nov 2012

2010

  1. The Effect of Negative-Energy Shells on the Schwarzschild Black Hole
    Jeffrey S Hazboun, and Tevian Dray
    Gen. Rel. Grav., Nov 2010

1967

  1. Vision
    wave-mechanics.gif
    Letters on wave mechanics
    Albert Einstein, Erwin Schrödinger, Max Planck, and 2 more authors
    Nov 1967

1956

  1. brownian-motion.gif
    Investigations on the Theory of the Brownian Movement
    Albert Einstein
    Nov 1956

1950

  1. AJP
    The meaning of relativity
    Albert Einstein, and AH Taub
    American Journal of Physics, Nov 1950

1935

  1. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?
    A. Einstein*†, B. Podolsky*, and N. Rosen*
    Phys. Rev., New Jersey. More Information can be found here , May 1935

1920

  1. Relativity: the Special and General Theory
    Albert Einstein
    May 1920

1905

  1. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
    A. Einstein
    Annalen der physik, May 1905
  2. Ann. Phys.
    Un the movement of small particles suspended in statiunary liquids required by the molecular-kinetic theory 0f heat
    A. Einstein
    Ann. Phys., May 1905
  3. On the electrodynamics of moving bodies
    A. Einstein
    May 1905
  4. Ann. Phys.
    Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt
    Albert Einstein
    Ann. Phys., May 1905